首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   275篇
  国内免费   190篇
  2023年   16篇
  2022年   31篇
  2021年   30篇
  2020年   40篇
  2019年   32篇
  2018年   40篇
  2017年   36篇
  2016年   42篇
  2015年   24篇
  2014年   28篇
  2013年   28篇
  2012年   51篇
  2011年   52篇
  2010年   53篇
  2009年   38篇
  2008年   52篇
  2007年   17篇
  1983年   1篇
  1958年   3篇
排序方式: 共有614条查询结果,搜索用时 31 毫秒
531.
以采集于贵州、云南、广西、湖南等地的火棘、密花火棘、全缘火棘、细圆齿火棘和窄叶火棘共5种火棘属植物26 401个成熟叶样为材料,利用WinFOLIA软件测量叶的多项形态指标并与叶面积进行11种模拟方程回归分析。结果表明:五种火棘属植物的叶面积(LA)与叶长×叶宽(LW)相关性最高,幂函数方程、三次方程、二次方程和线性方程能较好拟合其关系,且均以幂函数方程的解释程度最高(R2均大于0.970),5个物种的幂函数方程分别为LA=0.743(LW)0.936、LA=0.748(LW)0.936、LA=0.742(LW)0.955、LA=0.732(LW)0.952、LA=0.766(LW)0.954。这说明基于叶长×叶宽的叶面积幂函数方程能很好地来模拟五种火棘属植物的叶面积。  相似文献   
532.
中国的生物多样性研究在2012年取得了明显进展,在国际上的影响力不断提高.在生物多样性科学及相关领域比较好的国际刊物上发表的学术论文数量明显增加,质量也在提高(http://www.biodiversity-science.net/fileup/PDF/w2013-024-1.pdf).魏辅文研究组利用全基因组和深度测序的数据对旗舰种大熊猫的演化历史的解析(Zhao et al.,2012)、方精云及其团队在Ecography出版关于中国山地植物多样性格局的专辑、陈之端研究组命名的节蒴术科(Borthwickiaceae)被APG系统接受(Su et al.,2012)、何芳良提出根据分布面积的变化来评估物种灭绝风险的方法(He,2012)、邓建明等对植物自疏过程中密度与个体大小尺度关系的定最刻画(Deng et al.,2012a,b),以及余世孝等(Liu et al.,2012)和米湘成等(Mi et al.,2012)对群落谱系学方法的应用具有代表性.限于篇幅,本文仅从5个方面予以简单介绍.  相似文献   
533.
《植物生态学报》2018,42(3):265
分析不同草地类型生物量与碳密度空间分布特征及其影响因素, 揭示草地植物碳库的变化规律, 对于了解我国草地生态系统碳汇具有重要意义。2011-2013年以河北省天然草地为研究对象, 调查了不同草地类型的地上活体生物量、凋落物生物量和根系生物量以及各组分的碳密度。结果表明: 温性草原、温性草甸、温性山地草甸、低地盐化草甸、暖性草丛和暖性灌草丛6种草地类型的总生物量差异显著, 其中低地盐化草甸总生物量最高, 为2 770.2 g·m -2, 而温性草原最低, 为747.6 g·m -2, 前者约为后者的3.7倍; 地上活体生物量最大的是低地盐化草甸, 其次是暖性灌草丛和温性山地草甸, 最小的是温性草原, 分别为285.0、235.1、203.1和110.6 g·m -2; 凋落物生物量也是低地盐化草甸最大, 其次是温性山地草甸和温性草甸, 分别为584.0、187.9和91.0 g·m -2。6种草地类型的根系生物量均大于地上生物量, 是地上生物量的1.9-4.3倍, 不同草地类型根冠比的平均值为3.1; 低地盐化草甸的根系生物量最高, 为1901.3 g·m -2, 温性草原的根系生物量最低, 只有低地盐化草甸的1/3。在各类草地生物量碳密度方面, 低地盐化草甸的地上活体碳密度、凋落物碳密度与根系碳密度均为最大, 分别为132.7、81.2和705.9 g C·m -2。草地地上生物量、凋落物生物量和根系生物量以及总生物量均随海拔的升高先减少而后增加(p < 0.05); 草地生态系统总生物量和根系生物量随大于10 ℃积温的增加先降低而后升高(p < 0.01)。该研究中暖性灌草丛多分布在石质山区, 土层很薄, 植物地上生物量和根系生物量都比土层较厚的草甸草原低。可见, 在较大区域比较不同草地类型生物量时, 应综合考虑气候、土壤、地理等因素。  相似文献   
534.
《植物生态学报》2018,42(3):349
为揭示凋落物去除和添加处理对草原生态系统碳通量的影响, 2013和2014年连续两年在成熟群落围封样地进行凋落物去除实验、在退化群落放牧样地进行凋落物添加实验, 并运用静态箱法探讨碳通量变化规律并分析其主要影响因子。结果表明: 两种群落的净生态系统CO2交换(NEE)有明显的季节性变化。对成熟群落而言, 去除50%凋落物显著增加了NEE, 去除100%凋落物显著降低了NEE, 而对生态系统总初级生产力(GEP)和生态系统呼吸(ER)均无显著影响; 对退化群落而言, 凋落物添加显著增加了GEPNEE, 而对ER无显著影响。两种群落的GEP与10 cm土壤温度显著正相关, 但NEEGEP的变化规律与土壤温度相反, 与10 cm土壤湿度相同。由此可见, 凋落物去除和添加处理对生态系统碳通量的影响主要是改变土壤湿度和地上生物量,而不是改变土壤温度。该研究为合理利用凋落物改善草地生态系统管理和促进草地恢复提供了理论依据。  相似文献   
535.
《植物生态学报》2018,42(8):818
生产力是草地生态系统重要的服务功能, 而生物量作为生态系统生产力的主要组成部分, 往往同时受到氮和水分两个因素的限制。在全球变化背景下, 研究草地生态系统生物量对氮沉降增加和降水变化的响应具有重要意义, 但现有研究缺乏对其在大区域空间尺度以及长时间尺度上响应的综合评估和量化。本研究搜集了1990-2017年间发表论文的有关模拟氮沉降及降水变化研究的相关数据, 进行整合分析, 探讨草地生态系统生物量对氮沉降和降水量两个因素的变化在空间和时间尺度上的响应。结果表明: (1)氮添加、增雨处理以及同时增氮增雨处理都能够显著地提高草地生态系统的地上生物量(37%, 41%, 104%)、总生物量(32%, 23%, 60%)和地上地下生物量比(29%, 25%, 46%)。单独增雨显著提高地下生物量(10%), 单独施氮对地下生物量影响不显著, 但同时增雨则能显著提高地下生物量(43%); (2)氮添加和增雨处理对草地生态系统生物量的影响存在明显的空间变异。在温暖性气候区和海洋性气候区的草地生态系统中, 氮添加对地上、总生物量及地上地下生物量比的促进作用更强, 而在寒冷性气候区和温带大陆性气候区的草地生态系统中, 则增雨处理对地下、总生物量的促进作用更强; (3)草地生态系统生物量对氮添加和增雨处理的响应也存在时间格局上的变化, 地下生物量随着氮添加年限的增加有降低的趋势, 地上、总生物量及地上地下生物量比则有增加的趋势。增雨年限的增加对总生物量没有明显的影响, 但持续促进地上生物量和地下生物量, 增加地上地下生物量比, 可见长期增氮、长期增雨对地上生物量的促进作用更明显。  相似文献   
536.
《植物生态学报》2018,42(3):337
根系周转是陆地生态系统物质循环的关键指标, 也是陆地生态系统净初级生产力及碳固持潜力估算的核心参数。然而, 由于地下净初级生产力数据获取困难, 区域和全球尺度上的相关研究十分有限, 尤其是分布广泛的中国草地, 区域尺度上的整合研究几乎为空白。基于样地实测数据、已发表文献和在线数据库数据, 对中国草地5种植被类型、共计154个草地生态系统根系周转的空间格局进行整合分析, 并结合气象和土壤数据, 揭示了草地生态系统根系周转的关键驱动因子。研究发现: (1)根系周转速率随纬度升高而降低, 低纬度温暖地区根系周转更快; (2)气候因子(年平均气温、年降水量)和土壤理化性质(砾石含量、容重、pH值)共同影响根系周转, 对周转变异性的解释度为44%, 其中气候因子的相对贡献率为57%, 土壤理化性质的相对贡献率为43%; (3)中国草地根系周转的格局和驱动因子与全球尺度的研究结果不尽相同。该研究对根系周转的驱动因子提出了新的观点和证据, 为全球尺度上的整合研究提供了关键数据。  相似文献   
537.
正2015年8~11月,在湖北神农架森林生态系统国家野外科学观测研究站,3次发现一种此前未监测到的鸟类,鉴定为小黑领噪鹛(Garrulax monileger)。8月5日,在湖北宜昌市兴山县龙门河村黄崩口沟口西侧公路上方山坡(31°19′37′′N,110°28′59′′E,海拔1 292 m),小溪边的化香树(Platycarya strobilacea)林发现5只小黑领噪鹛并拍摄照片(图1);10月21日在龙门河东湾白栎子树包(31°19′32″N,110°31′19″E,海拔1 691 m)的巴山水青冈  相似文献   
538.
《植物生态学报》2016,40(4):354
Aims
The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China.
Methods
By using the 8th forest resource inventory data and 2011-2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province.
Important findings
The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t·hm-2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t·hm-2, 3.36 t·hm-2, 2.28 t·hm-2 and 90.51 t·hm-2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   
539.
消落带是陆地与水体(河流、湖泊、水库、湿地以及其他特殊水体)之间的生态过渡带,具有独特的生态水文学和生物地球化学过程,是截留和转化NH4+、NO3-等非点源氮素进入水体的最后一道生态屏障.整合已有相关研究成果发现: 1)植物固持作用改变氮素在土壤-植被-土壤-大气中相对存在位置;2)微生物反硝化作用将氮素从系统内永久性地去除,是消落带生态系统氮素截留转化的主要机制,但其相对贡献率仍有很大的不确定性.在不同流域背景条件下,影响消落带生态系统氮素生物地球化学循环的主要生态因子变化较大,很难确定地下水位高低、植被状况、微生物属性和土壤基质等哪一个生态因子是驱动消落带生态系统氮素循环的关键因子.研究方法的局限性、大的时空尺度数据的缺乏及对植被宽度认识的模糊性,是导致消落带生态系统氮素截留转化结果变异性大的主要原因.因此,应在消落带生态系统具体研究区位环境因子基础上,利用数学模型、GIS、RS等分析方法及同位素示踪和气体联用测定等定量分析技术,从不同时空尺度研究消落带生态系统氮素的循环与转化规律,以实现消落带生态系统氮素截留转化最优化,为消落带生态系统的科学管理提供理论基础.  相似文献   
540.
菱属(Trapa L.)的系统分类一直存在较大分歧,至今还没有一个比较公认的分类系统。黑龙江和图们江流域是菱属物种多样性的重要分布区之一,为了揭示该流域菱属植物的地理分布格局和形态多样性,我们进行了大量实地调查和研究。结果显示,从该地区28个湖中共采集到菱属11个种及8个种内变异类型,表明它们具有丰富的形态多样性;结合查阅菱属354份标本资料,共获得92个分布地点数据;采集到的11个物种的地理分布格局呈不均衡性,其中细果野菱(Trapa maximowiczii Korsch.)分布最广,野菱(Trapa incisa Siebold et Zucc.)、兴凯菱(Trapa khankensis Pshennikova)和科热夫尼科夫菱(Trapa kozhevnikovirum Pshennikova)为狭域分布种;东部乌苏里江和图们江流域是菱属物种多样性的分布中心,可能是第四纪冰期避难所;菱属植物多数种间形态特性相对稳定,东北菱(Trapa manshurica Fler.)、耳菱(Trapa potaninii V.Vassil)、丘角菱(Trapa japonica Fler.)、西伯利亚菱(Trapa sibirica Fler.)和细果野菱共有8个种内形态变异类型;种群内多数分类性状稳定,种群间形态变异较明显;菱属植物分布格局不均衡和种内形态变异的形成可能与基因流的扩散限制有关。本研究结果为进一步澄清菱属分类混乱问题奠定了基础,进一步结合分子标记技术研究系统演化关系将对揭示菱属的进化历史具有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号